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Abstract. A physical law is represented by the probability distribution of a measured variable. The prob-
ability density is described by measured data using an estimator whose kernel is the instrument scattering
function. The experimental information and data redundancy are defined in terms of information en-
tropy. The model cost function, comprised of data redundancy and estimation error, is minimized by the
creation-annihilation process.

PACS. 06.20.DK Measurement and error theory – 02.50.-r Probability theory, stochastic processes,
and statistics – 89.70.+c Information science

1 Introduction

Quantitative physical explorations of natural phenomena
involve three basic tasks: performing experiments, pro-
cessing data, and modeling physical laws [1]. The leading
trend in the development of modern experimental systems
is to automatize the first two tasks, while the solution of
the critical problem of modeling is still left to intuition.
In the recent literature there already appear attempts to
program as well the modeling for execution on a computer,
especially for data acquisition systems in industrial envi-
ronments [2]. Since measurements are always subject to
random influences [1], a statistical approach to modeling
is needed. Here we consider the probability distribution as
a general basis for modeling of a physical law. The first
step of the modeling is an estimation of probability density
function (PDF) from experimental data. The most widely
applicable is non-parametric estimation as it requires no
a priori assumptions about PDF [2,3].

From the estimated PDF the experimental physical
law can be extracted using the conditional average [2].
This average represents a non-parametric regression which
can be carried out simultaneously with the data acquisi-
tion by computer. The structure of the corresponding in-
formation processing system resembles a structure of the
radial basis function neural network [2,4,5]. In addition to
non-parametric regression, several other paradigms from
the fields of artificial neural networks, such as multilayer
perceptrons, can be interpreted as automatic modelers of
physical laws [2,4,6]. Various algorithms for adapting a
selected model to experimental data have already been de-
scribed [2,4,6], but the development of fundamental prin-
ciples for a specification of the model structure is still a
subject of current research [7]. The problems stem from
a significant contrast between the complexity of experi-
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mental data and the structure of physical laws. The in-
formation about the phenomenon explored is generally
increased with the number of experimental data; hence
instrumental science and technology tend to develop elec-
tronic devices with ever greater storage capacity. Contrary
to this, the most prominent property of a physical law is its
simplicity [1]. At present it is still not clear how an elec-
tronic modeler could automatically and optimally com-
press the overwhelming experimental data into a simple
law, although the theory of algorithmic information has
already prepared some fundamentals for the treatment of
this problem [8–10].

A simple model of physical law can be obtained by
minimizing a cost function which is composed of model er-
ror and complexity [8]. The theory of statistics offers well
elaborated methods for the estimation of the error [3,4,6],
while the description of the model complexity is physically
less well established [11,12]. For this purpose the measure
of algorithmic complexity is applicable [7–9], but this mea-
sure is derived from the program code that determines the
average model performance. In the physical literature the
complexity is usually considered as an intrinsic property
of the phenomenon and should therefore be expressed di-
rectly in terms of measured values [11]. With this aim
we define in the next section the experimental informa-
tion provided by measurements with an instrument of lim-
ited accuracy. It turns out that experimental information
is useful for the description of the excessive complexity
of data which can be utilized for the introduction of the
model cost function.

In order to avoid problems with joining the error and
complexity of the model in the cost function, it is conve-
nient to express both terms by a single quantity [8]. For
this purpose we employ the entropy of information [12,13],
since it is non-dimensional and provides a common basis
for formulation of error and complexity.
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2 Experimental information and redundancy
of data

At the definition of the experimental information we con-
sider a scalar-valued variable X since the generalization to
a multivariate case is straightforward. For this variable we
select a bounded continuous sample space SX = (−L,L),
where 2L is the span of the instrument applied. We assume
that an arbitrary number, say N , of statistically indepen-
dent measurements has yielded the samples x1, . . . , xN .
The non-parametric estimator of PDF is then expressed
by the sample average [2,3]

f(x) =
1
N

N∑
n=1

δ(x− xn). (1)

This estimator, though unbiased, is not consistent [2]. As
Parzen has shown [3,14], it can be made consistent by
using as a kernel a smooth approximation of the delta
function, such as the Gaussian

g(x− xn, σ) =
1√
2π σ

exp
[
− (x− xn)2

2σ

]
(2)

with some standard deviation σ dependent on N . Parzen’s
estimator

f(x) =
1
N

N∑
n=1

g(x− xn, σ(N)) (3)

is therefore biased [2], but the bias asymptotically van-
ishes if σ(N) properly decreases towards 0 with increas-
ing N [3,14]. The samples x1, . . . , xN themselves are con-
venient parameters of the PDF model, but unfortunately
their number must increase without limit and the smooth-
ing parameter σ(N) is introduced arbitrarily [4]. Since
measurements are subject to instrumental scattering, the
requirement that σ(N) vanishes is in conflict with a cor-
rect physical presentation of measured quantities [2]. Con-
sequently, we want to replace Parzen’s method by a finite
procedure, which would be more in tune with properties of
experiments and would from the very beginning incorpo-
rate the measurement inaccuracy in the PDF estimator.
For this purpose we turn first to the description of the
instrumental scattering and interpretation of measured
data.

A strict mathematical analysis of the performance
of various PDF estimators has attracted much attention
and in more advanced publications on this subject the
information entropy is utilized as a common analytical
tool [15–17]. However, an exhaustive mathematical analy-
sis of estimator performance appears too cumbersome for
experimentalist which often want to estimate the perfor-
mance of the estimator already during execution of exper-
iments. Consequently we still utilize the kernel estimator
but contrary to Parzen take into account at the description
of the kernel the scattering of data caused by measurement
procedure and describe the estimator performance by the
entropy of information.

An acquisition of a measured datum can generally be
considered as a measurement process in which the mea-
sured object generates the instrument output x. Common
to all measurements is that there exists an agreement by
which the units for the observed variable are selected.
Hence we assume that a set of objects is available by which
the units {Uk; k = 1, . . . } are determined. Using these ob-
jects we can perform a calibration of our instrument. The
next common property of measurements is that the out-
puts of instruments are fluctuating even when calibration
is performed. We assume that this property can be charac-
terized by determining the density of the probability dis-
tribution of the instrument output at each selected unit.
We denote the density of this distribution by ψ(x|Uk). Its
mean value uk = E[x|Uk] and standard deviation σ are
usually used to denote the kth element of the scale and
scattering of instrument output at the calibration. For the
sake of simplicity we further consider the cases where
the output scattering does not depend on the position
on the scale and can be expressed as a function of x− uk
and σ alone: ψ(x|Uk) = ψ(x − uk, σ). Most commonly a
Gaussian scattering function ψ(x − uk, σ) = g(x − uk, σ)
is observed. Its parameters uk and σ can be estimated by
the sample mean and variance of values measured during
repeated calibration. At given calibration unit we consider
the output scattering as a result of inherent fluctuations of
measurement procedure and the standard deviation σ as
the parameter that describes the quality of the instrument.

Consider a single observation of variable X over a cal-
ibrated instrument which yields a particular value x1.
A crucial step of our approach to experimental model-
ing is then performed by assuming that this value repre-
sents the center of the probability distribution ψ(x|X) =
g(x− x1, σ) that corresponds to the state of the observed
phenomenon and instrument during measurement. Ac-
cording to this interpretation the value x1 appears at the
instrument output, since it is the most probable at given
conditions of observation.

Let us next consider a set of N measurements of vari-
able X which yield the set of data {xi, ; i = 1, . . . , N}. Ac-
cording to the interpretation of a single datum we adapt to
these data the distributions {ψ(x− xi, σ); i = 1, . . . , N}.
When measured data x1, . . . , xN are spaced for more
than σ apart, we interpret their scattering as the con-
sequence of the external variation of instrument input in
repeated measurements. In this case we consider the in-
put X as a random variable and describe its PDF by the
mean over the set of experimentally obtained distributions
{ψ(x − xi, σ); i = 1, . . . , N}. The corresponding mixture
model [3]

fN (x) =
1
N

N∑
i=1

ψ(x− xi, σ), (4)

resembles Parzen’s estimator (3), but here σ is a constant
given by instrument calibration that is independent of
N . Therefore we also omit in the following text σ from
ψ. If the true probability distribution of variable X is
given, then the general properties of this estimator can be
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analyzed following the methods developed by the other
authors [15–17]. However, we rather proceed to the defini-
tion of experimental information and demonstration of its
applicability for the estimation of an optimal number of
experiments needed for the specification of the PDF. With
this aim we first describe the indeterminacy of variable X
in terms of the entropy of information [12]. For a discrete
random variable that assumes N states with probabilities
pi Shannon introduced the entropy of information by [13]

H = −
N∑
i=1

pi log pi. (5)

It is always between 0 and logN and attains its maximal
value when all probabilities are equal: pi = 1/N . For a
continuous random variable with PDF f(x) the indeter-
minacy must be defined relative to some given reference
probability density function ρ(x) as [18]

H = −
∫
SX

f(x) log
f(x)
ρ(x)

dx. (6)

The negative value of this variable is usually called the
relative entropy of f with respect to ρ [12]. We will use
as the reference the uniform density ρ(x) = 1/2L over the
instrument range for which we get

H = −
∫ L

−L
f(x) log f(x) dx− log 2L. (7)

With this formula we first express the uncertainty of the
instrument calibration as

Hu = −
∫ L

−L
ψ(x, u) logψ(x, u) dx− log 2L. (8)

For σ � L we obtain from the Gaussian scattering func-
tion ψ(x, xi) = g(x− xi, σ) the approximation

Hu ≈ log
σ

L
+

1
2

[
1 + log

π

2

]
, (9)

which shows that the uncertainty of calibration depends
only upon the ratio of scattering width 2σ and the in-
strument span 2L. The number log(σ/L) determines the
lowest possible uncertainty of measurement on the given
instrument, as achieved at its calibration.

The indeterminacy of the random variable X , which
characterizes the scattering of experimental data, is de-
fined by

He = −
∫ L

−L
fN(x) log fN (x) dx− log 2L (10)

and is generally greater than the uncertainty of calibra-
tion described by Hu. Since Hu denotes the lowest pos-
sible indeterminacy of observation carried out over given
instrument, we define the experimental information about
X by the difference

I = He −Hu = −
∫ L

−L
fN(x) log fN (x) dx

+
∫ L

−L
ψ(x, u) logψ(x, u) dx. (11)

With this definition we exclude the reference uniform den-
sity ρ(x) from the specification of the experimental infor-
mation which depends on fN (x) and ψ(x, u) only. For a
measurement that yields a single sample x1 the probabil-
ity density is given by f1(x) = ψ(x, x1), both integrals in
equation (11) are equal, and the experimental information
I is zero. For a measurement which yields multiple samples
x1, . . . , xN that are mutually separated by several σ, the
distributions ψ(x, xi) = g(x − xi, σ) are non-overlapping
and the first integral on right of equation (11) can be ap-
proximated as

− 1
N

N∑
i=1

∫ L

−L
ψ(x, xi) log

[ 1
N

N∑
i=1

ψ(x, xi)
]

dx ≈

logN −
∫ L

−L
ψ(x, x1) logψ(x, x1) dx (12)

and this yields I ≈ logN . When distributions ψ(x,xi) are
overlapping, but not concentrated at a single point, the
inequality 0 ≤ I ≤ logN holds. As the same relation is
characteristic of the entropy of information for a discrete
random variable, the experimental information has a sim-
ilar meaning to that of the entropy of information for a
discrete case. It describes how much information is pro-
vided by a series ofN experiments performed by an instru-
ment with the density of scattering distribution ψ(x, xi).
We thus interpret I as a measure of the complexity of
experimental data.

According to the above analysis N repeated exper-
iments can at most provide Imax = logN of informa-
tion and this happens when the distributions ψ(x, xi) are
non-overlapping. Since some overlapping normally takes
place, the actual experimental information I is smaller
than Imax. In such a case the measurements do not give
the maximal possible information, which means that char-
acterization of the probability distribution by N experi-
ments is to some extent redundant. Accordingly, we de-
fine the redundancy of experimental observation by the
difference

R = Imax − I. (13)

This definition is based only on available experimental
data, therefore R can be determined experimentally at
each step of data acquisition. It should be pointed out that
our definition differs from the common definition of the re-
dundancy in terms of mutual information which requires
specification of joint probability distribution of variables
that describe the data samples [12,15–17].

If the standard deviation σ of scattering is decreased
by improving the experiment, the redundancy is reduced
and tends to 0 along with σ. With an increasing num-
ber of samples the overlapping of distributions ψ(x, xi)
on the average increases and due to this overlapping I
increases more slowly than Imax = logN and tends to
a certain value I∞ with increasing N . Consequently, the
redundancy increases on the average with the number of
samples. Accordingly, the experimental information I can
be interpreted as a characteristic which determines the
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Fig. 1. Dependence of experimental information I on number
of samples N for a normally distributed variable X with s = 2.5
and various instrumental scattering widths σ.

number K of non-overlapping distributions that could rep-
resent the experimental observation. This number is de-
fined by

K = eI (14)

and can be determined from experimental data and the
scattering function ψ. Asymptotically K tends to a value
K∞, a characteristic, which can be estimated quite accu-
rately from a finite number of experiments.

We illustrate the above–mentioned properties by us-
ing a normal random variable X with standard deviation
s = 2.5. In order to render possible a simple setting of
its properties in illustrated examples, the samples xi were
generated by a computer. Figure 1 shows the dependence
of the experimental information on the number of sam-
ples for two cases of Gaussian instrument scattering with
σ = 0.05 and 0.25. The results obtained with three dif-
ferent sample sets demonstrate the statistical variation of
empirical information. In both cases the convergence of
experimental information to a fixed value is observed and
the limits K∞ ≈ 50 and K∞ ≈ 10 are approximately esti-
mated. As could be expected, for both cases they are equal
to the ratio s/σ. Similar results were also observed for
the uniform PDF and for mixtures of normal PDFs. The
displacement between the maximal possible experimental
information Imax = logN and other curves in Figure 1 is
the redundancy of observation.

3 Cost function and an optimal number
of samples

With an increasing number of experimental samples the
empirically estimated PDF converges to a function

f∞(x) = lim
N→∞

1
N

N∑
i=1

g(x− qi, σ), (15)
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Fig. 2. Dependence of the cost function C on number of sam-
ples N for a normally distributed variable X with s = 2.5 and
T = 104.

which we consider as the hypothetical PDF of variable X .
Since it can not be determined by repetition of experi-
ments, we must decide when to stop the experimentation.
From the analysis of the properties of Parzen’s estimator
(see Eq. (4.19) in Ref. [1]) we obtain the estimate for the
variance Var[fN (x)] ≤ [sup g(x)]2/N , which is applicable
if the accuracy of estimation is prescribed. When the ac-
curacy is not prescribed, the inequality only indicates that
N should be increased in order to decrease the variance;
but with increasing N the redundancy increases and we
should consider both properties when deciding about a
proper number of samples N . With this aim we utilize
two estimators comprising N and T samples. The estima-
tor with T samples is introduced as a reference by which
we estimate the prediction error of the estimator with N
samples. Consequently, fT should estimate f∞ with much
greater accuracy than fN and therefore we take T � N .
We then describe the estimation error by the Kullback-
Leibner information divergence [2]

D =
∫ L

−L

[
fN (x)− fT (x)

]
log

fN (x)
fT (x)

dx (16)

and define the information cost of fN relative to fT by

C = D +RN −RT . (17)

The dependence of C on N with T = 104 is shown in Fig-
ure 2 for the same data as in the case of Figure 1. The
number N0 at which the cost C is minimal is to be con-
sidered as the proper number of samples for modeling of
PDF. It depends on the samples used in estimator fN and
we statistically determined N0 = 35 ± 20 for σ = 0.25,
and N0 = 218± 64 for σ = 0.05. The relatively large sta-
tistical scattering of N0 is a consequence of the very slow,
approximately logarithmic divergence of the redundancy.
The number N0 also depends on the sample set used in
estimator fT , but if T is much greater than N0, its influ-
ence is negligible in comparison with statistical scattering.
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Figure 3 shows an example of the estimated probability
density fN0 for σ = 0.25, N0 = 46 and C(N0) = −4.8 nat.
For the purpose of comparison, fT is also shown in Fig-
ure 3. Our examples show that the proper number N0 is
several times greater than K∞. Since K∞ can be simply
calculated, N0 can be roughly estimated also without cal-
culation of the cost function.

Figure 3 shows that fN0 is a rather coarse estimator
of probability density. The reason for this property can
be explained if the variation of the estimation error and
redundancy term in the cost function with increasing N
is considered. When N increases the minimum of C is
achieved at a low number of samples because of increas-
ing redundancy; hence the estimation error need not be
negligible but just properly counter balanced by the re-
dundancy. This further means that a low number of func-
tions g(x − qi, σ) with a small σ cannot very accurately
represent a broad and smooth function fT (x).

4 Generalized PDF model

If we want to improve the representation of the PDF by
a small number of functions we evidently may not keep
σ fixed. For this purpose we change the estimator of fN0

into a general mixture model

fM (x) =
M∑
i=1

pi ψi(x) (18)

by using M basis functions ψi(x) = g(x− qi, σi) and ad-
justable parameters qi, σi and pi. We define here the en-
tropy of basis functions and the information content of the
model as means over probabilities pi

Hb = −
∫ L

−L

M∑
i=1

pi ψi(x) logψi(x) dx− log 2L, (19)

IM = HM −Hb (20)

= −
∫ L

−L

M∑
i=1

pi ψi(x) log
[∑M

j=1 pj ψj(x)
ψi(x)

]
dx.

The model redundancy end estimation error are then

RM = logM − IM , (21)

DM =
∫ L

−L

[
fM(x) − fT (x)

]
log

fM(x)
fT (x)

dx. (22)

With these characteristics we define the information cost
of the model relative to experimentally estimated fT (x)
as

CM = DM + RM −RT . (23)

If we want to adapt the model equation (18) to experimen-
tal data we must specify the number M and parameters qi,
σi, pi of basis functions [2]. We cannot achieve this by the
variation method sinceM is an integer number [3]. Various
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Fig. 3. Probability density functions fN0 (solid line), fT
(dashed line), and f∞ (dotted line).

methods of growing and pruning have been developed for
this purpose in the field of neural networks [6,7,19]. The
growing methods are mainly utilized when the model is
adapted to an increasing number of experimental samples,
while pruning is used when a large number of experimental
samples is compressed to a smaller number of representa-
tive data. In any case a decision about the creation or
annihilation of model terms must be reached, based upon
some criterion. In the literature various criteria have al-
ready been proposed, ranging from purely heueristical to
strictly theoretical ones, but at present there is still no
generally accepted method [7]. In our treatment we de-
cide to change the number of basis functions in the model
if the cost function CM is decreased by such action. With
this criterion we tested first the annihilation process and
then a combined creation-annihilation process, which are
described in the following subsections.

4.1 Model optimization by annihilation of terms

Consider the case when the function fT is determined by
an extensive set of redundant experimental data. We start
the adaptation of the model (18) to these data by selecting
M = T and assigning the values qi = xi, σi = σ, pi = 1/T
to parameters of basis functions. After that we consider
a model with M = T − 1 terms. If we try to determine
the parameters of the compressed model by a strict mathe-
matical procedure based on minimization of the cost func-
tion CT−1, we obtain a set of non-linear equations that is
difficult for further treatment. Less rigorously, but physi-
cally more sensibly, we proceed by assuming that an im-
proved model can be obtained by compressing ith and kth
term determined by pi, qi, σi and pk, qk, σk into single jth
term with parameters pj = pi + pk, qj = (piqi + pkqk)/pj ,
and σj = [σ2

j pi/pj +σ2
k pk/pj +(qi− qk)2 pipk/pj]1/2, that

represent the common probability, center of gravity and
standard deviation, respectively; consequently, the total
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Fig. 4. Probability density function fM (solid line) adapted to
fT (dashed line) by the compression of basis functions in the
model.

probability and the first two moments of the probability
distribution are preserved. The terms are actually com-
pressed only if the cost function is decreased. In the case
of just two terms with equal probabilities and widths it
was found numerically that they are compressed only if
their centers are separated by less than approximately
3σ. The procedure is then iterated on all terms of the
model until all possible compressions are carried out. Fig-
ure 4 shows a result of this procedure for a bi-modal PDF.
From the function fT , determined by 104 experimental
data, we obtain, after compression, the model with just
two basis functions and significantly reduced redundancy.
The agreement between the experimentally estimated fT
and the model function fM is determined by the pre-
diction error DM = 0.01 nat, while CM = 0.15 nat de-
scribes the information cost of such a representation. In
this case the cost is mainly determined by the redundancy
RM = 0.14 nat, which is a consequence of the overlapping
of model basis functions.

4.2 Model adaptation by the creation-annihilation
process

Although model optimization by annihilation is simple,
its weak point is that all the experimental data must be
acquired before the start of adaptation. But it is often con-
venient to form the model simultaneously with acquisition
of experimental data. In this case the compression method
could still be performed after each acquisition step, but for
this purpose all previously acquired data must be stored.
We therefore propose a more economical method whereby
less numerous model parameters are stored. At T = 1
we start modeling by setting f1(x) = g(x − x1, σ). Af-
ter each acquisition step we then create a new term with
the parameters xT , σT = σ, pT = 1/T and include it
in the previous model function by using weighted average
fT (x) = g(x−xT , σ)/T +fT−1(x)(T −1)/T . On this func-
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Fig. 5. Scheme of the creation-annihilation process. (∗ exper-
imental samples, • centers of model basis functions).

tion the compression is then performed. The created term
is either annihilated, if the acquired sample xT falls close
to the center of one of the basis functions that comprise the
model, or is preserved as an additional term of the model.
With increasing T the modification of the PDF by new ex-
perimental samples is less and less pronounced. When we
perform this procedure with the samples that were used
in the preparation of Figure 4, the resulting model PDF
agrees with the function, which was obtained by the an-
nihilation process. In the annihilation process the model
function is compared with fT as determined from a large
number of samples, while in the creation-annihilation pro-
cess two successive model functions are compared. Since
comparison of model functions can lead to accumulation of
errors, one could generally expect smaller modeling error
when using the annihilation process.

On average the number of model terms in the creation-
annihilation process initially increases and subsequently
decreases with the number of acquired experimental sam-
ples. Therefore, it is instructive to follow the development
of the model with an increasing number of samples. Fig-
ure 5 shows the result obtained during the adaptation of
the model to bi-modal PDF of Figure 4. At each acquisi-
tion time T the position of the sample xT is marked by a
star, while the centers of basis functions qi are marked by
bullets which may merge into lines. In the initial phase of
the model adaptation several basis functions are created
and in the later phase some of them are annihilated un-
til ultimately an optimal model structure is established.
After that the parameters of the model are less and less in-
fluenced by new experimental data. Annihilation of model
terms generally keeps the number M of model functions
below the number T of samples. Consequently, for large
T the storage of model parameters usually requires sig-
nificantly less memory space than the storage of all the
experimental data, and the resulting parameters of the
model can often be related to basic processes underlying
the investigated phenomenon.
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The general mixture model quite often exhibits signif-
icantly lower redundancy than the experimental model of
equation (4). For example, after compression of the exper-
imental data which determine fT of Figure 3, we obtained
just one term with q1 and σ1 determined by the sample
mean and standard deviation of variable X . These repre-
sent a non-redundant optimal model of the hypothetical
PDF. A similar conclusion holds for the model of the bi-
modal PDF of Figure 4.

5 Conclusions

We have shown how the PDF of a scalar variable can
be estimated non-parametrically by taking into account
the inaccuracy of measurements. By the properties of
the PDF estimator we have defined the experimental
information and redundancy of data. Even though the
same definition can be performed with a multivariate
variable, the analysis is less comprehensible since the
number of parameters in the scattering function increases.
We have not specified the form of the scattering function
based on fundamental principles, but the central limit
theorem of probability indicates that for this purpose a
normal distribution could be a proper choice, unless some
other is suggested by experiment. The most essential
terms of the model cost function are the estimation
error and the redundancy. During cost minimization
the estimation error provides for a proper adaptation of
the model to experimental data, while the redundancy
prevents excessive growth of complexity. The search for
the cost function minimum yields an estimate of the
proper number of the acquisition system data storage
cells. The proper number of data cells can be surprisingly
low since the redundancy and the divergence are even-
handedly treated in the cost function. If the width of basis
functions is determined by experimental scattering only,
then the model yields a rather coarse estimate of PDF.
The quality of the estimate can often be significantly
improved by using the generalized mixture model. The
adaptation of the mixture model leads to an effective PDF
estimator that is applicable in automatic measurement
systems. The creation-annihilation process described
also represents a new approach to modeling of artificial
neural networks [2]. In this case the modeler represents
a dynamic system with adaptable parameters which are
influenced by the experimental data. Evolution of the

model terms by creation and annihilation resembles con-
densation processes in vapors or evolution of grains in
alloys and is a typically non-linear, self-organized phe-
nomenon. This analogy indicates the possibility of optimal
modeler description by statistical physics and synergetics.
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